>
ICE swoops in on MS-13 kingpin hiding in America's heartland after investigation
Your relationship with the government explained
Episode 432: BIG PHARMA ON TRIAL
Trump's SHOCKING Epstein Answer, Brennan & Comey INVESTIGATED & Musk's Grok Goes WILD...
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
Laura Niklason is one of those pushing this boundary. During a visit, I followed one of her postdocs into a refrigerated closet in her Yale University laboratories. He reached out to a shelf and took down a jar. Unlike the amorphous piece of heart muscle Gordana Vunjak-Novakovic had showed me, there was no mistaking what was floating inside this container. It was a perfectly preserved pair of rat lungs, taken from an actual animal and "decellularized."
Like those who are engineering simpler tissue, Niklason relies on physical forces and a chemical soup to replicate the native environment of the organ and coax stem cells to mature into the kind of tissue she desires when manufacturing lungs. But she came to believe early in her efforts that science did not yet offer the technology to construct an artificial scaffolding detailed enough to emulate the shape and architecture of a real lung, a complex structure as labyrinthine as a Minotaur's maze.