>
Harvard University is being paid off to publish fake health studies by Big Food
38% of US debt is up for refinancing in the next 18 months
America's Second-Richest Elected Official Is Acting Like He Wants to Be President
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Laura Niklason is one of those pushing this boundary. During a visit, I followed one of her postdocs into a refrigerated closet in her Yale University laboratories. He reached out to a shelf and took down a jar. Unlike the amorphous piece of heart muscle Gordana Vunjak-Novakovic had showed me, there was no mistaking what was floating inside this container. It was a perfectly preserved pair of rat lungs, taken from an actual animal and "decellularized."
Like those who are engineering simpler tissue, Niklason relies on physical forces and a chemical soup to replicate the native environment of the organ and coax stem cells to mature into the kind of tissue she desires when manufacturing lungs. But she came to believe early in her efforts that science did not yet offer the technology to construct an artificial scaffolding detailed enough to emulate the shape and architecture of a real lung, a complex structure as labyrinthine as a Minotaur's maze.