>
Iran (So Far Away) - Official Music Video
COMEX Silver: 21 Days Until 429 Million Ounces of Demand Meets 103 Million Supply. (March Crisis)
Marjorie Taylor Greene: MAGA Was "All a Lie," "Isn't Really About America or the
Why America's Two-Party System Will Never Threaten the True Political Elites
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

But cellular computing is more than just a convenient metaphor. In the last couple of decades, biologists have been working to hack the cells' algorithm in an effort to control their processes. They've upended nature's role as life's software engineer, incrementally editing a cell's algorithm—its DNA—over generations. In a paper published today in Nature Biotechnology, researchers programmed human cells to obey 109 different sets of logical instructions. With further development, this could lead to cells capable of responding to specific directions or environmental cues in order to fight disease or manufacture important chemicals.
Their cells execute these instructions by using proteins called DNA recombinases, which cut, reshuffle, or fuse segments of DNA. These proteins recognize and target specific positions on a DNA strand—and the researchers figured out how to trigger their activity. Depending on whether the recombinase gets triggered, the cell may or may not produce the protein encoded in the DNA segment.
A cell could be programmed, for example, with a so-called NOT logic gate. This is one of the simplest logic instructions: Do NOT do something whenever you receive the trigger. This study's authors used this function to create cells that light up on command. Biologist Wilson Wong of Boston University, who led the research, refers to these engineered cells as "genetic circuits."
Here's how it worked: Whenever the cell did contain a specific DNA recombinase protein, it would NOT produce a blue fluorescent protein that made it light up. But when the cell did not contain the enzyme, its instruction was DO light up. The cell could also follow much more complicated instructions, like lighting up under longer sets of conditions.
Wong says that you could use these lit up cells to diagnose diseases, by triggering them with proteins associated with a particular disease. If the cells light up after you mix them with a patient's blood sample, that means the patient has the disease. This would be much cheaper than current methods that require expensive machinery to analyze the blood sample.