>
Harvard University is being paid off to publish fake health studies by Big Food
38% of US debt is up for refinancing in the next 18 months
America's Second-Richest Elected Official Is Acting Like He Wants to Be President
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
But cellular computing is more than just a convenient metaphor. In the last couple of decades, biologists have been working to hack the cells' algorithm in an effort to control their processes. They've upended nature's role as life's software engineer, incrementally editing a cell's algorithm—its DNA—over generations. In a paper published today in Nature Biotechnology, researchers programmed human cells to obey 109 different sets of logical instructions. With further development, this could lead to cells capable of responding to specific directions or environmental cues in order to fight disease or manufacture important chemicals.
Their cells execute these instructions by using proteins called DNA recombinases, which cut, reshuffle, or fuse segments of DNA. These proteins recognize and target specific positions on a DNA strand—and the researchers figured out how to trigger their activity. Depending on whether the recombinase gets triggered, the cell may or may not produce the protein encoded in the DNA segment.
A cell could be programmed, for example, with a so-called NOT logic gate. This is one of the simplest logic instructions: Do NOT do something whenever you receive the trigger. This study's authors used this function to create cells that light up on command. Biologist Wilson Wong of Boston University, who led the research, refers to these engineered cells as "genetic circuits."
Here's how it worked: Whenever the cell did contain a specific DNA recombinase protein, it would NOT produce a blue fluorescent protein that made it light up. But when the cell did not contain the enzyme, its instruction was DO light up. The cell could also follow much more complicated instructions, like lighting up under longer sets of conditions.
Wong says that you could use these lit up cells to diagnose diseases, by triggering them with proteins associated with a particular disease. If the cells light up after you mix them with a patient's blood sample, that means the patient has the disease. This would be much cheaper than current methods that require expensive machinery to analyze the blood sample.