>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Recently, veterinarians have developed a protocol for estimating the pain a sheep is in from its facial expressions, but humans apply it inconsistently, and manual ratings are time-consuming. Computer scientists at the University of Cambridge in the United Kingdom have stepped in to automate the task. They started by listing several "facial action units" (AUs) associated with different levels of pain, drawing on the Sheep Pain Facial Expression Scale. They manually labeled these AUs—nostril deformation, rotation of each ear, and narrowing of each eye—in 480 photos of sheep. Then they trained a machine-learning algorithm by feeding it 90% of the photos and their labels, and tested the algorithm on the remaining 10%. The program's average accuracy at identifying the AUs was 67%, about as accurate as the average human, the researchers will report today at the IEEE International Conference on Automatic Face and Gesture Recognition in Washington, D.C. Ears were the most telling cue.