>
Tell General Mills To Reject GMO Wheat!
Climate Scientists declare the climate "emergency" is over
Trump's Cabinet is Officially Complete - Meet the Team Ready to Make America Great Again
Former Polish Minister: At Least Half of US Aid Was Laundered by Ukrainians...
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
NASA Game Changing Development program backed Kilopower, with the goal of building and testing a small fission reactor by Sept. 30, 2017, the end of the current fiscal year. The project is costing about $15 million.
The test reactor, which is about 6.5 feet tall (1.9 meters), is designed to produce up to 1 kilowatt of electric power, but to keep costs down, the test unit does not include a full array of Stirling engines to convert energy generated by the fission process into heat. Thermal simulators will be used for the balance of the engines to verify the reactor's power output
NASA recently completed a feasibility study for small fission power systems (FPS). As NASA is seeking game changing technologies to transform the nation's space mission capabilities, small FPS could reduce NASA's dependence on plutonium. A small kilowatt-class FPS could enable future flagship science missions and exploration precursor missions that may not otherwise be possible.