>
Ranchers in Washington are challenging the state over a fundamental constitutional question...
President Milei launched an account in English but it was suspended by X a few hours later.
The Trump Doctrine: "They Have It. We Want It. We Take It."
Event 201 Pandemic Exercise: Segment 4, Communications Discussion and Epilogue Video
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

Light-matter quasi-particĀles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University (Germany) and the University of St Andrews (Scotland) used light-emitting and extremely stable transistors to reach strong light-matter coupling and create exciton-polaritons. These particles may pave the way for new light sources, so-called electrically pumped polariton lasers, that could be manufactured with carbon nanotubes. These findings, published in "Nature Materials", are the result of a cooperation between Prof. Dr Jana Zaumseil (Heidelberg) and Prof. Dr Malte C. Gather (St Andrews).
In recent years, research on organic, carbon-based semiconductors for optoelectronic components has led to a variety of applications. Among them are light-emitting diodes for energy-efficient, high-resolution smartphone and TV screens. Despite the rapid progress in this area, realising an electrically pumped laser from organic materials remains elusive.