>
Tucker shares 'backroom' info about brawl between him and Israel First crowd…
Why Isn't There a Cure for Alzheimer's Disease?
US Government Revokes 80,000 Visas
OpenAI CEO Sam Altman served legal papers during speech in dramatic on-stage ambush
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

The apparent key to solve the problem of uber-fast charging is to use a highly conductive, two-dimensional material called MXene. The team has demonstrated charging of thin MXene electrodes in tens of milliseconds.
At the same time, MXene will allow the storage of much more energy than conventional supercapacitors, (although the presser is silent about how much more). So for now it's open question whether MXene has the potential to beat well known lithium–titanate chemistry.
For now we will keep it in the theoretical category for EV commercialization.
There could be plenty of applications for recharging in minutes (at least at an affordable price), but we are not sure whether we can sacrifice any range in a electric vehicle application to solve the high-power requirement for that kind of charging (5 minutes recharge of 50 kWh pack needs 600 kW of power).