>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Nonvolatile memory is already familiar as the basis for flash memory in thumb drives, but flash technology has essentially reached its size and performance limits. For several years, the industry has been hunting for a replacement.
RRAM could surpass flash in many key respects: It is potentially faster and less energy-intensive. It also could pack far more memory into a given spaceāits switches are so small that a terabyte could be packed into a space the size of a postage stamp. But RRAM has yet to be broadly commercialized because of technical hurdles that need addressing.
RRAM switches are flipped on and off by an electrical pulse that moves oxygen ions around, creating or breaking a conductive path through an insulating oxide. NIST research shows that shorter, less energetic pulses are more effective at moving the ions the right amount to create distinct on/off states, potentially minimizing the longstanding problem of state overlap that has kept RRAM largely in the R&D stage. Credit: Hanacek and Nminibapiel/NIST
One hurdle is its variability. A practical memory switch needs two distinct states, representing either a one or a zero, and component designers need a predictable way to make the switch flip. Conventional memory switches flip reliably when they receive a pulse of electricity, but we're not there yet with RRAM switches, which are still flighty.