>
Riley Gaines Challenges AOC To Debate After Dem Rep. Mocked Ex-Collegiate Swimmer For Losing...
Dodgers beat the Blue Jays in one of the greatest World Series games of all time after six hours...
Trump makes Japan's prime minister literally JUMP FOR JOY at raucous rally for troops...
'Monster' hurricane Melissa makes landfall in Jamaica as multiple people are left dead...
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Nonvolatile memory is already familiar as the basis for flash memory in thumb drives, but flash technology has essentially reached its size and performance limits. For several years, the industry has been hunting for a replacement.
RRAM could surpass flash in many key respects: It is potentially faster and less energy-intensive. It also could pack far more memory into a given spaceāits switches are so small that a terabyte could be packed into a space the size of a postage stamp. But RRAM has yet to be broadly commercialized because of technical hurdles that need addressing.
RRAM switches are flipped on and off by an electrical pulse that moves oxygen ions around, creating or breaking a conductive path through an insulating oxide. NIST research shows that shorter, less energetic pulses are more effective at moving the ions the right amount to create distinct on/off states, potentially minimizing the longstanding problem of state overlap that has kept RRAM largely in the R&D stage. Credit: Hanacek and Nminibapiel/NIST
One hurdle is its variability. A practical memory switch needs two distinct states, representing either a one or a zero, and component designers need a predictable way to make the switch flip. Conventional memory switches flip reliably when they receive a pulse of electricity, but we're not there yet with RRAM switches, which are still flighty.