>
Pentagon To Send 200 Troops to Nigeria
Trump Says He May Send Second Aircraft Carrier to Middle East To Prepare for Potential Attack...
A Market Crash and Recession Are Bullish, Not Bearish
What Are They Still Hiding? New Epstein Questions Point to a Much Bigger Cover-Up
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

f the NASA emdrive performance of 1.2 millinewtons per kilowatt.
8.3 TeraWatts of power would be needed to provide 10 million newtons of thrust to accelerate a 1000 ton space-craft at 1 gee of acceleration. We have no power source that could generate 8.3 TeraWatts for a 1000 ton spacecraft.
If EMDrive performance increases with the Q-factor as some have theorized, then we could tune the cavity and make it superconducting. If we take the NASA EM-Drives and pump the Q factor to ~30 million, then about 2 GW power is needed for the sustained 1 gee thrust.
Theoretical nuclear fission reactors could power such a spacecraft. Gas-core or magnetic collimator fission-fragment reactor might be work but have been theoretically designed and have very limited experimental development.A fast-spectrum reactor with a thermal output of ~ 6 GW and ~35 % thermal conversion efficiency would be a first pass design to supply the power. Assuming ~100% burn-up the fuel used over 20 years masses 4.2 tons. If the reactor mass was limited to ~200 tons, then it'd need to supply power at 10 kWe/kg of reactor mass, which is very high performance.