>
Deporting Illegals Is Legal - Military In America's Streets Is Not!
Turn Your Homesteading into a Farm (Making Money on the Homestead) | PANTRY CHAT
"History Comes In Patterns" Neil Howe: Civil War, Market Crashes, and The Fourth Turning |
How Matt Gaetz Escaped Greenberg's Honeypot and Exposed the Swamp's Smear Campaign
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Using a tool called topology optimization, they enlist computers to snip as much material as possible from the inside of objects, reducing the number of spokes on a bicycle wheel, for example. But current methods can only optimize simple objects such as brackets and pipes. Now, a team of researchers says it has created a new method of paring down large-scale objects. The trick is resolution. Three-dimensional images are measured in voxels, a bit like computer images that are measured in pixels. In the past, the resolution of optimized 3D models was limited to 5 million voxels, but the new program—reported today in Nature—can optimize objects up to 1 billion voxels in size. The engineers put the system through its paces by feeding it the wing dimensions from a Boeing 777 airliner. A supercomputer crunched the numbers for 5 days and produced a new design: a wing with a radical internal structure that is kept solid through curved wing spars and diagonal ribs, instead of the gridlike internal ribbing present in standard airplane wings. The new, more hollow wing weighs 5% less than the wings currently in use on the 777, which could save 200 metric tons of fuel per year. Because of its incredibly complicated design, the wing is currently unfeasible for manufacturing. But in the future, new methods of 3D printing could allow engineers to build similar extreme wing designs.