>
"We Have To Respond With Force & Strength. We Have To Be Vicious, Just Like They Are":
US Air Force's first official autonomous combat drone takes to the air
Cracker Barrel suspends all restaurant remodels after disastrous rebrand controversy
The moment Israel bombs Hamas leaders as they discuss Trump's Gaza ceasefire deal in Qatar:
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
By tapping into the random fluctuations of the carbon atoms that make up graphene sheets, the scientists can generate an alternating current strong enough to indefinitely power a wristwatch.
Graphene is a lattice of carbon just one atom thick, and its incredible strength and conductivity of electricity and heat mean it might soon start cropping up in everything from light bulbs to dental fillings, microphones, motorbike helmets, water filters, smartphone screens and even heat-dissipating shoes.
The University of Arkansas researchers stumbled onto a new potential use for the material, when they set out to study the innate movements of graphene using a scanning tunneling microscope. In a phenomenon called Brownian motion, particles suspended in a fluid will randomly move in response to collisions with larger particles in the environment. In the case of a sheet of graphene, the atoms vibrate in response to the temperature around them, making sections of the linked carbon atoms rise and fall like waves on the ocean, sending ripples running through the material.