>
Creating the First Synthetic Human D.N.A From Scratch
Texas Ready for $10M Bitcoin Purchase After Governor Signs Bill for State Reserve
How do you feel about this use of AI
Big Tech Executives Welcomed as Army Colonels, New Government AI Project Leaked
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
By tapping into the random fluctuations of the carbon atoms that make up graphene sheets, the scientists can generate an alternating current strong enough to indefinitely power a wristwatch.
Graphene is a lattice of carbon just one atom thick, and its incredible strength and conductivity of electricity and heat mean it might soon start cropping up in everything from light bulbs to dental fillings, microphones, motorbike helmets, water filters, smartphone screens and even heat-dissipating shoes.
The University of Arkansas researchers stumbled onto a new potential use for the material, when they set out to study the innate movements of graphene using a scanning tunneling microscope. In a phenomenon called Brownian motion, particles suspended in a fluid will randomly move in response to collisions with larger particles in the environment. In the case of a sheet of graphene, the atoms vibrate in response to the temperature around them, making sections of the linked carbon atoms rise and fall like waves on the ocean, sending ripples running through the material.