>
Conservatives Are Being Targeted – Louder with Crowder CEO Warns / Redacted
"Liz Reitzig: Raw Milk Revolution"
Court Clears Trump to Defund Planned Parenthood
PepsiCo, Mars, ADM team up for regenerative agriculture project in Poland
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
Making parts like these smaller will help enable quantum computers with millions of qubits.
Above – Lead author of the study, PhD candidate Alice Mahoney, in the quantum science laboratories at the Sydney Nanoscience Hub.
The Sydney team's component, coined a microwave circulator, acts like a traffic roundabout, ensuring that electrical signals only propagate in one direction, clockwise or anti-clockwise, as required. Similar devices are found in mobile phone base-stations and radar systems, and will be required in large quantities in the construction of quantum computers. A major limitation, until now, is that typical circulators are bulky objects the size of your hand.
They used the properties of topological insulators to slow the speed of light in the material. This miniaturization paves the way for many circulators to be integrated on a chip and manufactured in the large quantities that will be needed to build quantum computers.