>
Former White House Advisor: "Trump to Release $150 Trillion Endowment"
The Mayo Clinic just tried to pull a fast one on the Trump administration...
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
Dr. Aseem Malhotra Joins Alex Jones Live In-Studio! Top Medical Advisor To HHS Sec. RFK Jr. Gives...
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Epigenetic Editing
Other proteins—like ones that activate gene expression—can be combined with a crippled Cas9, letting them toggle genes on and off (sometimes with light or chemical signals) without altering the DNA sequence. Epigenetic editing could be used to tackle conditions such as diabetes, acute kidney disease, and muscular dystrophy.
Editing individual base pairs
Crispr system has been modified to edit individual base pairs, one at a time. They designed a brand-new enzyme—one not found in nature—that could chemically convert an A-T nucleotide pairing to a G-C one. David Liu, the Harvard chemist whose lab did the work, estimates that about half of the 32,000 known pathogenic point mutations in humans could be fixed by that single swap.
Creating programmable off switches for Crispr
Researchers have identified 21 unique families of naturally occurring anti-Crispr proteins—small molecules that turn off the gene-editor. But they only know how a handful of them work.