>
6.8 SPC vs. 300 Blackout: Powering Up the AR Platform
Autism Study By McCullough Foundation Begins New Era of Free Scientific Inquiry
REVOLUTION DAY 8: Libertarians JOIN The Revolution
US Government and Westinghouse $80bn Nuclear Reactor Deal
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Epigenetic Editing
Other proteins—like ones that activate gene expression—can be combined with a crippled Cas9, letting them toggle genes on and off (sometimes with light or chemical signals) without altering the DNA sequence. Epigenetic editing could be used to tackle conditions such as diabetes, acute kidney disease, and muscular dystrophy.
Editing individual base pairs
Crispr system has been modified to edit individual base pairs, one at a time. They designed a brand-new enzyme—one not found in nature—that could chemically convert an A-T nucleotide pairing to a G-C one. David Liu, the Harvard chemist whose lab did the work, estimates that about half of the 32,000 known pathogenic point mutations in humans could be fixed by that single swap.
Creating programmable off switches for Crispr
Researchers have identified 21 unique families of naturally occurring anti-Crispr proteins—small molecules that turn off the gene-editor. But they only know how a handful of them work.