>
Christmas Truce of 1914, World War I - For Sharing, For Peace
The Roots of Collectivist Thinking
What Would Happen if a Major Bank Collapsed Tomorrow?
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

Epigenetic Editing
Other proteins—like ones that activate gene expression—can be combined with a crippled Cas9, letting them toggle genes on and off (sometimes with light or chemical signals) without altering the DNA sequence. Epigenetic editing could be used to tackle conditions such as diabetes, acute kidney disease, and muscular dystrophy.
Editing individual base pairs
Crispr system has been modified to edit individual base pairs, one at a time. They designed a brand-new enzyme—one not found in nature—that could chemically convert an A-T nucleotide pairing to a G-C one. David Liu, the Harvard chemist whose lab did the work, estimates that about half of the 32,000 known pathogenic point mutations in humans could be fixed by that single swap.
Creating programmable off switches for Crispr
Researchers have identified 21 unique families of naturally occurring anti-Crispr proteins—small molecules that turn off the gene-editor. But they only know how a handful of them work.