>
China Will Close the Semiconductor Gap After EUV Lithography Breakthrough
The Five Big Lies of Vaccinology
Large global study analyzing data from 192 countries has sparked intense debate by suggesting...
EngineAI T800: Born to Disrupt! #EngineAI #robotics #newtechnology #newproduct
This Silicon Anode Breakthrough Could Mark A Turning Point For EV Batteries [Update]
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China

Most people thought she was mixing oil and water. "I had a heck of a time getting published," she recalled. "The neural-network journals would say, 'What is this quantum mechanics?' and the physics journals would say, 'What is this neural-network garbage?'"Today the mashup of the two seems the most natural thing in the world. Neural networks and other machine-learning systems have become the most disruptive technology of the 21st century. They out-human humans, beating us not just at tasks most of us were never really good at, such as chess and data-mining, but also at the very types of things our brains evolved for, such as recognizing faces, translating languages and negotiating four-way stops. These systems have been made possible by vast computing power, so it was inevitable that tech companies would seek out computers that were not just bigger, but a new class of machine altogether.