>
America Growing at Odds with Itself: Something's Not Being Said
Outraged Farmers Blame Ag Monopolies as Catastrophic Collapse Looms
Exposing the Cover-Up That Could Collapse Big Medicine: Parasites
Israel's Former Space Security Chief says Aliens exist, and President Trump knows about it
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
Murder, UFOs & Antigravity Tech -- What's Really Happening at Huntsville, Alabama's Space Po
In the 1970s, Princeton physicist Gerard O'Neill led two Stanford/NASA Ames Research Center summer studies that supported the feasibility of kilometer-scale orbital cities. These studies assumed that the NASA space shuttle would operate as expected, a flight every week or two, $500/lb. to orbit, and one failure per 100,000 flights. The studies also assumed that a more efficient follow-on heavy-lift launcher would be developed.
Now the SpaceX BFR being developed over the next 5 years or so could deliver low-cost launch that did not happen with the Space Shuttle. The SpaceX Falcon Heavy with reusable first stages could achieve the $500 per pound to orbit target. A fully reusable SpaceX BFR should be able to get well below $500 per pound. SpaceX BFR has a target of $5 to 10 million per launch of 150 tons. A cost of $30 million per launch would enable $100 per pound. SpaceX BFR plans more redundant engines to improve the safety and reliabilty.