>
2 Hours of Retro Sci-Fi Christmas Songs | Atomic-Age Christmas at a Snowy Ski Resort
Alternative Ways to Buy Farmland
LED lights are DEVASTATING our bodies, here's why | Redacted w Clayton Morris
Travel gadget promises to dry and iron your clothes – totally hands-free
Perfect Aircrete, Kitchen Ingredients.
Futuristic pixel-raising display lets you feel what's onscreen
Cutting-Edge Facility Generates Pure Water and Hydrogen Fuel from Seawater for Mere Pennies
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer

MIT scientists recently developed a 3D version that's 10 times stronger than steel but a fraction of the density, and now a team at Rice University has used carbon nanotubes to reinforce graphene foam. The resulting 3D material can be molded into any shape and supports 3,000 times its own weight before springing back to its original height.
Named for the rebars (reinforcing bars) commonly used to strengthen concrete, Rice's "rebar graphene" is built around carbon nanotubes with several concentric layers. In previous work the team had created three-dimensional graphene foam, and having already used the nanotubes to reinforce regular old 2D graphene, it made sense to combine the two.
"We developed graphene foam, but it wasn't tough enough for the kind of applications we had in mind, so using carbon nanotubes to reinforce it was a natural next step," says James Tour, lead researcher on the study.