>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
(Natural News) Earthquakes can cause immense damage to infrastructure, in turn hindering the operation of important public services. A team of researchers from the Universitat Politècnica de València reportedly developed a new construction element capable of overcoming that problem.
Dubbed "Smart Seismic Concrete Connection" (SSCC), this material is a combination of two "symbiotic" components: Shape-memory metal alloy bars and high-performance concrete. The result is an element that strengthens the connections between structural materials, and allows structures to recover their original shapes after earthquakes with little need for repairs.
"The use of this system permits having self-centering structures. The invention comes from the desire to solve a need for today's society: constructing seismic-resistant structures for people, and maintaining their operating capacity after an earthquake, without major repairs or economic losses," researcher José Luis Bonet told AlphaGalileo.org.
In addition to providing an extra measure of protection, Bonet and his colleagues stated that SSCC has a multitude of other benefits. The aim of SSCC is to improve structural performance, hence they designed it to be easy to install within existing walls, beams, and columns. Moreover, SSCC has a great advantage over quake-dampening building pendulums in that it doesn't require any additional space, nor does it need regular maintenance to continue doing its job.
"Our philosophy is not constructing more solid structures; rather the contrary," said Bonet. "Just as the wind splits a trunk, a reed is flexible enough to bend, adapt to movement and recover its position when the wind stops blowing, without scarcely suffering damages and splitting."
Bonet added that SSCC was specially designed for infrastructure that would need more protection during emergencies, meaning that he and his colleagues had bridges, hospitals, and power plants in mind. Sports venues and shopping centers were also taken into consideration due to the high volume of people that frequent these places. Residential applications were not out of the picture, however, and developers are more than welcome to utilize the SSCC for the construction of homes, apartments, and condominiums.