>
2025-09-17 -- Ernest Hancock interviews James Corbett (Corbett Report) MP3&4
Whistleblower EXPOSES How Israel Brainwashes American Christians!
Joe Rogan listens to "How to destroy America"
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
They have useful and unique electronic properties which are useful for probing new physics and they might be useful for spintronics and quantum computers. Those might be far faster forms of computing.
Electrons in monolayer graphene are described by massless Dirac electrons, which exhibit unique quantum phenomena due to the pseudospin and Berry phase of the massless electron.
A tunable bandgap up to 200 meV can be induced in bilayer graphene with electrical gating.
Dirac fermions in quasicrystalline graphene
Quasicrystal lattices, which can have rotational order but lack translational symmetry, can be used to explore electronic properties of materials between crystals and disordered solids. Ahn et al. grew graphene bilayers rotated exactly 30° that have 12-fold rotational order. Electron diffraction and microscopy confirmed the formation of quasicrystals, and angle-resolved photoemission spectroscopy revealed anomalous interlayer electronic coupling that was quasi-periodic.