>
Google is issuing a call to action:
Be first, be smarter, or cheat
The Next Plandemic: 3,625 Biolabs, Nipah Virus Patents, and Self-Amplifying mRNA Injections
HERE WE GO - SWISS FRANC HIT ANOTHER RECORD.
Drone-launching underwater drone hitches a ride on ship and sub hulls
Humanoid Robots Get "Brains" As Dual-Use Fears Mount
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE

Nanotube research accelerated greatly following the independent discoveries by Bethune at IBM and Iijima at NEC of single-walled carbon nanotubes and methods to specifically produce them by adding transition-metal catalysts to the carbon in an arc discharge.
It has been very difficult to make larger amounts of carbon nanotubes and to make them longer. It has been even more difficult to combine lots of carbon nanotubes and make the combined material close to the strength of individual carbon nanotubes.
In 2008, it was found individual CNT shells have strengths of up to ≈100 gigapascals (15,000,000 psi). Although the strength of individual CNT shells is extremely high, weak shear interactions between adjacent shells and tubes lead to significant reduction in the effective strength of multi-walled carbon nanotubes and carbon nanotube bundles down to only a few GPa.