>
Government shutdown triggers travel nightmare as controller shortages force ground stops...
How a natural PEPTIDE helped me REGENERATE injured tissue
Asteroid Threat Detection and Planetary Defense Can Be Complete and Ready by 2035
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

It operates under conditions of high temperature 400–500 °C and pressure 200–250 bar, and its production has a huge carbon footprint. The H2 precursor, usually obtained by steam reforming of methane, also has a very large carbon footprint. Notably, the entire energy required to prepare the reagents and to operate the Haber-Bosch process amounts to 1–3% of the global energy supply. In stark contrast, in the natural world, plants and bacteria have been producing NH3 from N2 and solvated protons under ambient conditions, enabled by the FeMo cofactor of the metalloenzyme nitrogenase (N2 + 6H+ 6e-→2NH3). Inspired by this biological nitrogen fixation process, intensive efforts have been devoted to finding ways to mimic the process under similarly mild conditions.
The Haber-Bosch process uses a catalyst or container made of iron or ruthenium with an inside temperature of over 800?F (426?C) and a pressure of around 200 atmospheres to force nitrogen and hydrogen together. The elements then move out of the catalyst and into industrial reactors where the elements are eventually converted into fluid ammonia (Rae-Dupree, 2011). The fluid ammonia is then used to create fertilizers.