>
Deporting Illegals Is Legal - Military In America's Streets Is Not!
Turn Your Homesteading into a Farm (Making Money on the Homestead) | PANTRY CHAT
"History Comes In Patterns" Neil Howe: Civil War, Market Crashes, and The Fourth Turning |
How Matt Gaetz Escaped Greenberg's Honeypot and Exposed the Swamp's Smear Campaign
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Led by Manu Mannoor and Sudeep Joshi, a team from New Jersey's Stevens Institute of Technology started with an ordinary, living button mushroom. They proceeded to 3D-print a branched pattern onto its cap, using an electronic ink containing graphene nanoribbons. Next, utilizing a bio-ink containing cyanobacteria, they 3D-printed a spiral pattern over top of the first pattern.
Shining a light on the mushroom caused the bacteria to photosynthesize, producing electrons which passed through their outer membranes. At points on the cap where the bio-ink pattern intersected that of the electronic ink, those electrons were transferred to a conductive network formed by the graphene nanoribbons.
The setup ultimately generated a current of about 65 nanoAmps. While that isn't enough to power a device, it is thought that an array of the mushrooms could illuminate an LED.