>
Episode 483 - Dissent Into Madness
Israel Placed Surveillance Devices Inside Secret Service Emergency Vehicles...
Here is the alleged partial chat log between Tyler Robinson and his trans lover...
MAJOR BREAKING: State Department & UN ties to Armed Queers SLC leader now confirmed
This "Printed" House Is Stronger Than You Think
Top Developers Increasingly Warn That AI Coding Produces Flaws And Risks
We finally integrated the tiny brains with computers and AI
Stylish Prefab Home Can Be 'Dropped' into Flooded Areas or Anywhere Housing is Needed
Energy Secretary Expects Fusion to Power the World in 8-15 Years
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
Currently metals can be welded to metals and glass to glass, but the two don't mix well. They require different temperatures to melt and they expand differently in response to the heat. There are other manufacturing methods to get them to stick together, but they aren't quit as neat.
"Being able to weld glass and metals together will be a huge step forward in manufacturing and design flexibility," says Duncan Hand, director of the EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes, which developed the new technique. "At the moment, equipment and products that involve glass and metal are often held together by adhesives, which are messy to apply and parts can gradually creep, or move. Outgassing is also an issue – organic chemicals from the adhesive can be gradually released and can lead to reduced product lifetime."
The new technique works on optical materials such as quartz, borosilicate glass and sapphire, which can now be welded to metals like aluminum, stainless steel and titanium. The key to the process was an infrared laser that fires pulses on the scale of a few picoseconds – trillionths of a second.