>
Digital IDs Just Went Live - Say Goodbye To Your Privacy & Money
The United States Is Buying Stocks (China's Playbook 2.0)
We have no other choice but to outright refuse and deny digital ID
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Currently metals can be welded to metals and glass to glass, but the two don't mix well. They require different temperatures to melt and they expand differently in response to the heat. There are other manufacturing methods to get them to stick together, but they aren't quit as neat.
"Being able to weld glass and metals together will be a huge step forward in manufacturing and design flexibility," says Duncan Hand, director of the EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes, which developed the new technique. "At the moment, equipment and products that involve glass and metal are often held together by adhesives, which are messy to apply and parts can gradually creep, or move. Outgassing is also an issue – organic chemicals from the adhesive can be gradually released and can lead to reduced product lifetime."
The new technique works on optical materials such as quartz, borosilicate glass and sapphire, which can now be welded to metals like aluminum, stainless steel and titanium. The key to the process was an infrared laser that fires pulses on the scale of a few picoseconds – trillionths of a second.