>
The Secret Campaign To Stop RFK Jr.
You Can't Grow Your Way Out: The GOP's Debt Delusion Exposed
Musk Sets Off Fireworks: Polls X Users on End of Two-Party 'Uniparty' System...
xAI Grok 3.5 Renamed Grok 4 and Has Specialized Coding Model
AI goes full HAL: Blackmail, espionage, and murder to avoid shutdown
BREAKING UPDATE Neuralink and Optimus
1900 Scientists Say 'Climate Change Not Caused By CO2' – The Real Environment Movement...
New molecule could create stamp-sized drives with 100x more storage
DARPA fast tracks flight tests for new military drones
ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study
How China Won the Thorium Nuclear Energy Race
Sunlight-Powered Catalyst Supercharges Green Hydrogen Production by 800%
Researchers report a self-smoothing lithium–carbon anode structure based on mesoporous carbon nanofibres, which, coupled with a lithium nickel–manganese–cobalt oxide cathode with a high nickel content, can lead to a cell-level energy density of 350–380 Wh per kg (counting all the active and inactive components) and a stable cycling life up to 200 cycles. These performances are achieved under the realistic conditions required for practical high-energy rechargeable lithium metal batteries: cathode loading over 4.0 mAh per cm^2, negative to positive electrode capacity ratio less than 2 and electrolyte weight to cathode capacity ratio less than 3 g per Ah. The high stability of our anode is due to the amine functionalization and the mesoporous carbon structures that favour smooth lithium deposition.
Nature Nanotechnology – Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions