>
Wash Post Editorial Board Turns Against Climate Agenda?!
One Year Ago I Predicted and Described in Detail Huge Mars AI Plans that Elon Musk Confirmed...
British Teachers To "Spot Misogyny" In Boys And Target Them For Reeducation
Democrats Refuse To Release Post-Mortem Of 2024 Election Loss, DNC Chair Says
This tiny dev board is packed with features for ambitious makers
Scientists Discover Gel to Regrow Tooth Enamel
Vitamin C and Dandelion Root Killing Cancer Cells -- as Former CDC Director Calls for COVID-19...
Galactic Brain: US firm plans space-based data centers, power grid to challenge China
A microbial cleanup for glyphosate just earned a patent. Here's why that matters
Japan Breaks Internet Speed Record with 5 Million Times Faster Data Transfer
Advanced Propulsion Resources Part 1 of 2
PulsarFusion a forward-thinking UK aerospace company, is pushing the boundaries of space travel...
Dinky little laser box throws big-screen entertainment from inches away
'World's first' sodium-ion flashlight shines bright even at -40 ºF

On Wednesday June 27, 2019 we published an article (ref) on a Kyocera/24M manufacturing process. That process sounded very similar to the Maxwell/Tesla manufacturing process using a solvent-free electrode manufacturing process and thick electrodes:
From the Kyocera/24M article:
The use of thick electrodes significantly reduces inactive materials content – copper, aluminum and separator – yielding substantial cost savings.
Moreover, using electrolyte as the processing solvent results in the elimination of numerous capital- and energy-intensive steps like drying, solvent recovery, calendaring and electrolyte filling. The elimination of these steps, and the reduction in plant footprint associated with the steps, yields a capital reduction of up to 50%.