>
Trump: NATO Spending Boost is 'Monumental Win For Western Civilisation'
How Many Radical Islam Sleepers Are in the United States?
Startling number of foods and drinks that contain cancer-linked ingredient revealed in major study
RFK Jr's bonkers plan to fit every American with a tracking device...
Aptera's Solar EV Is Finally Ready For Production. Watch The Livestream Here
In-Wheel EV Hub Motors Could Be A Game-Changer. Why Aren't They Here Yet?
Mars Terraforming Within 40 Years for Plants and No Spacesuits
See-Through the Future of Display
$849 Wattcycle Server Rack Battery?! Quick Review...
After Trump Threatened Apple, His Sons Announce a Made-in-America Phone
"We're Not Ready for AI Simulation" | Official Preview
$839 Ecoworthy Version 3: Best Value 48V Battery for 2025?
Feature-packed portable learning lab for makers puts AI within reach
The magnet is wound from REBCO (Rare earth – Barium – Copper Oxide) HTS tape. This conduction-cooled all-REBCO magnet achieved its peak field at 21K in a cold bore of 50 mm, which we believe to be record performance. In superconducting terms, 21K is a relatively high temperature. Additionally, the magnet is extremely robust, reliable and simple to manufacture. The engineers have been impressed by the defect tolerance of the coils and their response to a sudden loss of superconductivity, called a quench.
The achievement is an important milestone on the route to commercial fusion energy because high magnetic fields are necessary for tokamak machines to trap the hot fusion fuel, which is in the form of an electrically-charged gas called plasma. High temperature superconducting materials will facilitate the higher magnetic fields necessary for efficient commercial fusion reactors.
The progress of the HTS team has been faster than expected with milestones being hit well ahead of schedule (this milestone was scheduled for late 2020). The next step is to scale up these magnets into the configuration required for tokamaks.