>
US Considering a Plan To Split Gaza into Two With One Zone Controlled by Israel and the Other...
WHO Drafts Plan For 'Global Health Emergency Corps' To Override Governments On Pandemics...
3.4 Million Foreign-Born People Claiming Welfare Benefits in Britain
Masked Muslim youths take to east London streets to 'defend our community' after police bann
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

Researchers have developed a unique new material out of wood and spider silkāand since it outperforms most of today's synthetic and natural materials by providing high strength, stiffness, and increased toughness, scientists say it could one day replace plastic.
Achieving strength and extensibility at the same time has so far been a great challenge in material engineering: increasing strength has meant losing extensibility and vice versa.
Now Aalto University and VTT Technical Research Centre of Finland researchers have succeeded in overcoming this challenge by seeking inspiration from nature.
The researchers created a truly new bio-based material by gluing together wood cellulose fibers and the silk protein found in spider web threads. The result is a very firm and resilient material which could be used in the future as a possible replacement for plastic, as part of bio-based composites and in medical applications, surgical fibers, textile industries, and packaging.
According to Aalto University Professor Markus Linder, nature offers great ingredients for developing new materials, such as firm and easily available cellulose and tough and flexible silk used in this research. The advantage with both of these materials is that, unlike plastic, they are biodegradable and do not damage nature the same way micro-plastic do.
"We used birch tree pulp, broke it down to cellulose nanofibrils, and aligned them into a stiff scaffold. At the same time, we infiltrated the cellulosic network with a soft and energy dissipating spider silk adhesive matrix," says Research Scientist Pezhman Mohammadi from VTT.