>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
The world is crying out for real electric aviation options, but as yet, existing lithium-ion cells are so heavy that they're not practical for much more than short journeys. Density is the key, and with leading commercial Li-ion cells still only storing around 250 Wh/kg (in Tesla's 2170 cells, used in the Model 3), everyone's waiting on new cell chemistries that offer higher densities while still remaining reliable and safe.
Or perhaps, in this case, something older. Lithium-sulfur batteries have been around since the 1960s, and have long been known for their relatively high energy density and low cost. The letdown has been cycle life; lithium polysulfides are quite soluble in the electrolytes used in batteries, meaning that the cathode eventually melts away over time.