>
The Vain Struggle to Curb Congressional Stock Trading
The Tesla Model S Is Dead. Here's Why It Mattered
America's First Car With Solid-State Batteries Could Come From This Little-Known EV Maker
POWERFUL EXCLUSIVE: Learn Why Silver, Gold, & Bitcoin Plunged After JD Vance Announced...
How underwater 3D printing could soon transform maritime construction
Smart soldering iron packs a camera to show you what you're doing
Look, no hands: Flying umbrella follows user through the rain
Critical Linux Warning: 800,000 Devices Are EXPOSED
'Brave New World': IVF Company's Eugenics Tool Lets Couples Pick 'Best' Baby, Di
The smartphone just fired a warning shot at the camera industry.
A revolutionary breakthrough in dental science is changing how we fight tooth decay
Docan Energy "Panda": 32kWh for $2,530!
Rugged phone with multi-day battery life doubles as a 1080p projector
4 Sisters Invent Electric Tractor with Mom and Dad and it's Selling in 5 Countries

Now, scientists are claiming that a new type of fiber-reinforced concrete could soon serve as a lighter and greener alternative.
The experimental building material was developed by Amir Hajiesmaeili, a PhD student working in the Structural Maintenance and Safety Laboratory of Switzerland's EPFL research institute.
In place of the usual steel fibers, it incorporates fibers made of a very stiff type of polyethylene. These not only provide the same amount of structural support as steel fibers, but they also adhere very well to the cement. As a result, approximately half as much cement is required, with readily-available limestone making up the difference.
This is quite noteworthy, as the production of traditional Portland cement is a major source of greenhouse gas emissions. In fact, Hajiesmaeili claims that the manufacturing of his ultra high-performance fiber-reinforced concrete (UHPFRC) releases 60 to 70 percent less CO2 than that of regular steel-fiber equivalents. And as an added bonus, the material is also reportedly 10 percent lighter.