>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
This year offered a little something for everybody with an interest in this area of science, bringing us tech that could charge electric vehicles in 10 minutes, batteries that suck carbon dioxide out of the air and news that the world's biggest battery is set to get even bigger. Here are the most significant battery breakthroughs of 2019.
Ideally, the lithium-ion batteries that power our mobile devices and today's electric vehicles stay within a certain temperature range when charging, otherwise they run the risk of degrading and suffering a far shorter lifespan. But there is plenty to be gained by charging them at higher temperatures if we can do so safely, namely a greater efficiency and therefore potentially far shorter plug-in times.
In October, a team of Penn State University researchers demonstrated a new kind of battery built to take the heat. Charging a battery at around 60° C (140° F) would normally be considered "forbidden," by scientists, but the researchers' device hits these temperatures in just 10 minutes and then rapidly cools before the deleterious effects can take hold.