>
Who Really Owns America (It's Not Who You Think)
Canada Surrenders Control Of Future Health Crises To WHO With 'Pandemic Agreement': Report
Retina e-paper promises screens 'visually indistinguishable from reality'
Unearthed photos of 'Egypt's Area 51' expose underground complex sealed off...
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them
China Innovates: Transforming Sand into Paper
Millions Of America's Teens Are Being Seduced By AI Chatbots
Transhumanist Scientists Create Embryos From Skin Cells And Sperm
You've Never Seen Tech Like This
Sodium-ion battery breakthrough: CATL's latest innovation allows for 300 mile EVs
Defending Against Strained Grids, Army To Power US Bases With Micro-Nuke Reactors

A patent application for a new battery that uses glass as a key component has been submitted by a team headed by John Goodenough, the part winner of the 2019 Nobel Prize in Chemistry for his work as co-inventor of the now ubiquitous lithium-ion battery that is the go-to power source for electric cars and energy storage.
And the new glass battery promises to accelerate the shift away from internal combustion engines because it will deliver a significant increase in storage capacity.
By "spiking" glass with either sodium or lithium to form an electrode within the battery, the researchers say the new battery technology provides three times the energy storage capacity of comparable lithium-ion batteries.
It is also neither volatile nor flammable, and does not display issues of lithium dendrite growth that plagues li-ion batteries, which can cause short-circuits and present safety hazards.
First described in a 2016 paper published in Energy and Environmental Science, and now in a patent application activated on Sunday on behalf of the LNEG (National Laboratory of Energy and Geology) in Portugal, the University of Porto, Portugal and the University of Texas, the new glass battery electrode has the potential to upturn the transport industry.
That is, if it is commercialised. But according to Goodenough, who spoke with IEEE's Spectrum magazine about the technology, the glass battery could finally break through the price barrier that hinders the uptake of electric cars.
"I think we have the possibility of doing what we've been trying to do for the last 20 years," Goodenough, who is emeritus professor at the Cockrell School of Engineering at the University of Texas, Austin, told Spectrum.
"That is, to get an electric car that will be competitive in cost and convenience with the internal combustion engine."
It could also be used to store intermittent solar and wind power on the electric grid, Goodenough tells Spectrum.
Fellow researcher Maria Helena Braga from the University of Texas, Austin says that early testing also suggests could also have "perhaps thousands" of charge and discharge cycles, more than the average 1,000-2,000 cycles achievable in typical nickel-manganese-cobalt or lithium iron phosphate batteries.
Addtionally, the glass battery electrode has shown it can withstand a wider range of temperatures – between -20º C and 60º C.
"Rechargeable batteries containing a water-solvated glass/amorphous solid electrolyte described herein can provide a safe, low-cost stationary battery capable of storing a large amount of electrical energy for feeding the grid or charging the battery or capacitor of an electric vehicle since the temperature range of operation of a stationary battery can be kept small through all seasons at little cost," reads the patent.