>
Playing With Browsers to Find Google's Kryptonite
$349 165Ah Redodo Battery Teardown: The Company Responds!
Joel Salatin: Alternative Chicken Feed
Aptera's Solar EV Is Finally Ready For Production. Watch The Livestream Here
In-Wheel EV Hub Motors Could Be A Game-Changer. Why Aren't They Here Yet?
Mars Terraforming Within 40 Years for Plants and No Spacesuits
See-Through the Future of Display
$849 Wattcycle Server Rack Battery?! Quick Review...
After Trump Threatened Apple, His Sons Announce a Made-in-America Phone
"We're Not Ready for AI Simulation" | Official Preview
$839 Ecoworthy Version 3: Best Value 48V Battery for 2025?
Feature-packed portable learning lab for makers puts AI within reach
Graphene is essentially a two-dimensional sheet of carbon atoms, arranged in a hexagonal pattern. This deceptively simple material has a range of useful properties – it's incredibly lightweight, thin and flexible, but still strong. It's also an excellent conductor of electricity and heat, so it's turning up in everything from electronics to water filters to clothing.
Ideally, one useful way to get graphene into the right configurations could involve dispersing it in water. This solution could then be painted or sprayed onto a surface to make, for example, supercapacitor electrodes or conductive coatings.
The problem is that graphene and similar forms of carbon, like graphite and carbon nanotubes, are hydrophobic, meaning they repel water. They can be made to disperse using harsh organic solvents or mechanical treatments, but the former is toxic and the latter can introduce defects.