>
Tulsi Gabbard Exposes Alarming Biden-Era 'Domestic Terrorism' Strategy
"Levitating Diamonds Reach Impossible Speed":
Talons From The Sky: Coiled Scales On The Ground
If You Could Destroy America: How Would You Do It?
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
Graphene is essentially a two-dimensional sheet of carbon atoms, arranged in a hexagonal pattern. This deceptively simple material has a range of useful properties – it's incredibly lightweight, thin and flexible, but still strong. It's also an excellent conductor of electricity and heat, so it's turning up in everything from electronics to water filters to clothing.
Ideally, one useful way to get graphene into the right configurations could involve dispersing it in water. This solution could then be painted or sprayed onto a surface to make, for example, supercapacitor electrodes or conductive coatings.
The problem is that graphene and similar forms of carbon, like graphite and carbon nanotubes, are hydrophobic, meaning they repel water. They can be made to disperse using harsh organic solvents or mechanical treatments, but the former is toxic and the latter can introduce defects.