>
OTOY | GTC 2023: The Future of Rendering
Humor: Absolutely fking hilarious. - Language warning not for children
President Trump's pick for Surgeon General Dr. Janette Nesheiwat is a COVID freak.
What Big Pharma, Your Government & The Mainstream Media didn't want you to know.
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
Back in 2018, we heard how researchers at Saudi Arabia's King Abdullah University of Science and Technology (KAUST) had used lasers to transmit HD video through water. Their experimental new system, known as Aqua-Fi, builds on that technology.
A user such as a scuba diver would start by sending data (such as photos or videos) from a smartphone contained in a watertight housing. That data would initially be transmitted in the form of radio waves, going just a few feet to a small device mounted on the diver's air tanks.
A microcomputer in that device would then convert the data into a series of ultra-rapid light pulses, each pulse representing either a 1 or a 0 in binary code. Those pulses would subsequently be emitted towards the surface, using either an integrated 520-nanometer laser or an array of green LEDs – the LEDs could send the data relatively short distances using little power, while the laser could send it farther but would use more power to do so
Upon reaching the surface, the light pulses would be received by a photodetector on the underside of a ship, then converted back into the original photos or videos by a connected computer. From there, the files could be uploaded onto the internet via satellite.
So far, the Aqua-Fi system has been used to upload and download multimedia between two computers placed a few meters apart in still water. Before it can enter real-world use, though, it will have to be adapted to meet challenges such as the light-scattering effect of swiftly moving water – doing so may involve utilizing a spherical receiver, that could detect light pulses coming in from all directions.