>
Another one of Bill Gates' evil plans
Crowds break into "Amazing Grace" hymn in Central London tonight in honour of Charlie Kirk
The Central Bank Digital Currency (CBDC) is a tool cloaked in the guise of financial innovation...
We finally integrated the tiny brains with computers and AI
ORNL tackles control challenges of nuclear rocket engines
Tesla Megapack Keynote LIVE - TESLA is Making Transformers !!
Methylene chloride (CH2Cl?) and acetone (C?H?O) create a powerful paint remover...
Engineer Builds His Own X-Ray After Hospital Charges Him $69K
Researchers create 2D nanomaterials with up to nine metals for extreme conditions
The Evolution of Electric Motors: From Bulky to Lightweight, Efficient Powerhouses
3D-Printing 'Glue Gun' Can Repair Bone Fractures During Surgery Filling-in the Gaps Around..
Kevlar-like EV battery material dissolves after use to recycle itself
Laser connects plane and satellite in breakthrough air-to-space link
Lucid Motors' World-Leading Electric Powertrain Breakdown with Emad Dlala and Eric Bach
The focus of the study was a hardy little bug called Neocerambyx Gigas. This species of longhorn beetle is commonly found in Thailand and Indonesia, chilling out around active volcanoes where summertime temperatures soar above 40 °C (104 °F) on the regular, and the ground can get as hot as 70 °C (158 °F).
So just how do these beetles handle the heat? Finding out was the goal of the new study by researchers at the University of Texas at Austin, Shanghai Jiao Tong University, and KTH Royal Institute of Technology. The team discovered how the beetle's shell structure helps it cool down, and mimicked it to make a new passive cooling film.
The longhorn beetle, it turns out, has tiny triangular structures on its wings that reflect sunlight, while also allowing its body heat to escape. So, the researchers set out to mimic that structure in a material.