>
LAWYER: If the City Demands a MANDATORY 'Home Inspection,' DO THIS.
US Launches Two More Airstrikes in Somalia
US Seizes Sixth Venezuela-Linked Tanker
US Surging Military Assets To the Middle East To Prepare for War With Iran After Trump...
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury
Nano Nuclear Enters The Asian Market
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?

The focus of the study was a hardy little bug called Neocerambyx Gigas. This species of longhorn beetle is commonly found in Thailand and Indonesia, chilling out around active volcanoes where summertime temperatures soar above 40 °C (104 °F) on the regular, and the ground can get as hot as 70 °C (158 °F).
So just how do these beetles handle the heat? Finding out was the goal of the new study by researchers at the University of Texas at Austin, Shanghai Jiao Tong University, and KTH Royal Institute of Technology. The team discovered how the beetle's shell structure helps it cool down, and mimicked it to make a new passive cooling film.
The longhorn beetle, it turns out, has tiny triangular structures on its wings that reflect sunlight, while also allowing its body heat to escape. So, the researchers set out to mimic that structure in a material.