>
Video: Analyst Claims "The Bushes" Are Running DeSantis' Presidential Campaign
The Cure For Cancer Has Been Known For 42 Years?
Ted Nugent Slams 'Homosexual Weirdo' Zelensky at Trump Rally: 'I Want My Money Back!
Musk expects Tesla Bot to be a much bigger business than its cars
Autoflight breaks Joby's world record for the longest eVTOL flight
How does Starlink Satellite Internet Work?
SpaceX Starlink Version 2 Mini Will Have 4X Version 1.5 Capacity
Blue Origin Making Solar Cells from Lunar Regolith
Preparing to keep people alive on medical equipment when SHTF hits. Try to solve this problem.
Peak laser intensity demonstrations have occurred on specific Nd:glass-based lasers:
* the Vulcan PW in the UK at 1 × 10^21 W/cm2 (2004);
* the Ti:sapphirebased HERCULES laser at the University of Michigan, USA at 1 × 10^22 W/cm2 (2004)
* J-KAREN-P in Japan at 1 × 10^22 W/cm2 (2018)
* record intensity of 5.5 × 10^22 W/cm2 was demonstrated at the CoReLS laser (2019)
Even the highest-peak-power laser systems (10 PW and beyond) proposed or already in commissioning make no exception to this trend and largely predict intensities of only up to 10^23 W/cm2
(notably L4-ELI, EP-OPAL , SULF and SEL).
A fundamental physics or engineering limit is not clear; however, material challenges such as imperfect diffraction gratings, optics and gain materials reduce the overall laser focusability in time and space.
The steady ascent of Ti:sapphire, OPCPA and Nd:glass technologies upward in peak power has, with the construction of several ten to multi-tens of petawatt systems, nearly reached the ∼100 PW limit of metre-scale gold diffraction gratings.