>
O'KEEFE INFILTRATES DAVOS WORLD ECONOMIC FORUM
We're Better Than We Think We Are
Mike Benz reminds MAGA who the REAL enemy is. And it's our fault…
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

But one gene gone awry can imperil a child's health, causing serious disease or a disability that leaves one more susceptible to health issues. With advances in gene-editing technology, though, biomedicine is entering an uncharted era in which a genetic mutation can be reversed, not only for one person but also for subsequent generations.
Public debate has swirled around genetic engineering since the first experiments in gene splicing in the 1970s. But the debate has taken on new urgency in recent years as gene modification has been simplified with CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats) technology.
Scientists have compared the technology to word processing software: It acts like a cursor placed next to a typo, capable of editing a gene at a level so granular it can change a single letter in a long genetic sequence.