>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Forget Houston. This Space Balloon Will Launch You to the Edge of the Cosmos From a Floating...
SpaceX and NASA show off how Starship will help astronauts land on the moon (images)
How aged cells in one organ can cause a cascade of organ failure
World's most advanced hypergravity facility is now open for business
New Low-Carbon Concrete Outperforms Today's Highway Material While Cutting Costs in Minnesota
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
But one gene gone awry can imperil a child's health, causing serious disease or a disability that leaves one more susceptible to health issues. With advances in gene-editing technology, though, biomedicine is entering an uncharted era in which a genetic mutation can be reversed, not only for one person but also for subsequent generations.
Public debate has swirled around genetic engineering since the first experiments in gene splicing in the 1970s. But the debate has taken on new urgency in recent years as gene modification has been simplified with CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats) technology.
Scientists have compared the technology to word processing software: It acts like a cursor placed next to a typo, capable of editing a gene at a level so granular it can change a single letter in a long genetic sequence.