>
2025-10-20 -- Ernest Hancock interviews Karen Kwiatkowski (MP3&4)
Will We See a New Era of Truly Popular Anti-Statism?
30 Minute Secret Makes Your Water Heater Last Decades
3D Printed Aluminum Alloy Sets Strength Record on Path to Lighter Aircraft Systems
Big Brother just got an upgrade.
SEMI-NEWS/SEMI-SATIRE: October 12, 2025 Edition
Stem Cell Breakthrough for People with Parkinson's
Linux Will Work For You. Time to Dump Windows 10. And Don't Bother with Windows 11
XAI Using $18 Billion to Get 300,000 More Nvidia B200 Chips
Immortal Monkeys? Not Quite, But Scientists Just Reversed Aging With 'Super' Stem Cells
ICE To Buy Tool That Tracks Locations Of Hundreds Of Millions Of Phones Every Day
Yixiang 16kWh Battery For $1,920!? New Design!
Find a COMPATIBLE Linux Computer for $200+: Roadmap to Linux. Part 1
Diamonds are forever, or so the slogan goes. But with the proper application of heat and enough oxygen, a diamond can go up in smoke.
Diamonds are carbon, just like coal. It takes a bit more to get them burning and keep them burning than coal, but they will burn, as numerous YouTube demonstrations will attest. The trick is to create the right conditions so that a solid diamond can react with the oxygen required to fuel a fire.
"You have to convert that solid [carbon] into a gas form, so it can react with the air to make a flame," said Rick Sachleben, a retired chemist and member of the American Chemical Society.
The best way to do that? Heat — and lots of it. In room temperature air, diamonds ignite at around 1,652 degrees Fahrenheit (900 degrees Celsius), according to West Texas A&M University physicist Christopher Baird. For comparison, a high-volatile coal (coal containing a relatively high amount of easily released gases) ignites at about 1,233 F (667 C), whereas wood ignites at 572 F (300 C) or less, depending on the type.
When first heated, a diamond will glow red, then white. The heat enables a reaction between the surface of the diamond and the air, converting the carbon to the colorless and odorless gas carbon monoxide (a carbon atom plus an oxygen atom).
"The carbon plus the oxygen to make carbon monoxide generates heat; the carbon monoxide reacting with the oxygen generates more heat; the rising heat causes the carbon monoxide to move away, so more oxygen is brought in," he told Live Science.