>
Sunday FULL SHOW: Newly Released & Verified Epstein Files Confirm Globalists Engaged...
Fans Bash Bad Bunny's 'Boring' Super Bowl Halftime Show, Slam Spanish Language Performan
Trump Admin Refuses To Comply With Immigration Court Order
U.S. Government Takes Control of $400M in Bitcoin, Assets Tied to Helix Mixer
SpaceX Authorized to Increase High Speed Internet Download Speeds 5X Through 2026
Space AI is the Key to the Technological Singularity
Velocitor X-1 eVTOL could be beating the traffic in just a year
Starlink smasher? China claims world's best high-powered microwave weapon
Wood scraps turn 'useless' desert sand into concrete
Let's Do a Detailed Review of Zorin -- Is This Good for Ex-Windows Users?
The World's First Sodium-Ion Battery EV Is A Winter Range Monster
China's CATL 5C Battery Breakthrough will Make Most Combustion Engine Vehicles OBSOLETE
Study Shows Vaporizing E-Waste Makes it Easy to Recover Precious Metals at 13-Times Lower Costs

DARPA has awarded a US$14-million contract to the Gryphon Technologies engineering firm to develop and demonstrate a nuclear rocket engine for the agency's Demonstration Rocket for Agile Cislunar Operations (DRACO) program. The High-Assay Low Enriched Uranium (HALEU) Nuclear Thermal Propulsion (NTP) system will allow the US military to carry out missions in cislunar space.
The single greatest limitation in space travel is the propulsion system. On Earth, it's possible to create motors that have a very high payload ratio, so one can, in the words of an early aviator, make a tea tray fly by putting enough power behind it. However, getting into space requires such high velocities and such high energies that engineers are forced to use very large engines and huge amounts of fuel to put very small payloads into orbit.
Once in space, there are essentially two options. One is to use chemical rockets, but these have largely reached their theoretical limits when it comes to thrust, or eclectic propulsion systems that produce very small thrust for very long periods of time.
As far back as 1945, it was recognized that there was a third option, which is to harness the power of the atom to produce a rocket that is more powerful than its chemical counterparts. The problem has been to create a practical design that produces enough thrust to warrant the investment.