>
An $11 TRILLION Systemic Risk is Coming in Late March
Beneath Greenland's vast ice sheet lies one of Earth's most ancient geological treasures:
Remember the names of every Republican member of Congress who votes no today...
Superheat Unveils the H1: A Revolutionary Bitcoin-Mining Water Heater at CES 2026
World's most powerful hypergravity machine is 1,900X stronger than Earth
New battery idea gets lots of power out of unusual sulfur chemistry
Anti-Aging Drug Regrows Knee Cartilage in Major Breakthrough That Could End Knee Replacements
Scientists say recent advances in Quantum Entanglement...
Solid-State Batteries Are In 'Trailblazer' Mode. What's Holding Them Up?
US Farmers Began Using Chemical Fertilizer After WW2. Comfrey Is a Natural Super Fertilizer
Kawasaki's four-legged robot-horse vehicle is going into production
The First Production All-Solid-State Battery Is Here, And It Promises 5-Minute Charging

Scientists at the Ulsan National Institute of Science & Technology (UNIST) in South Korea have unveiled their novel diagnostic technique known as fluorescence in situ hybridization (FISH), using artificial polymers – peptide nucleic acid (PNA) – that act as probes to bind to different genetic sequences within bacteria. When the two probe molecules bind to the target, fluorescent signals are emitted, which essentially reveal the fingerprint of different pathogens.
"The fluorescence in situ hybridization (FISH) technique allows the rapid detection and identification of microbes based on their variation in genomic sequence without time-consuming culturing or sequencing," the scientists noted. "However, the recent explosion of microbial genomic data has made it challenging to design an appropriate set of probes for microbial mixtures. We developed a novel set of peptide nucleic acid (PNA)-based FISH probes with optimal target specificity by analyzing the variations in 16S ribosomal RNA sequence across all bacterial species."