>
A $31 million Bitcoin donation to Silk Road founder Ross Ulbricht...
Joe Rogan Experience #2334 - Kash Patel
Trump announces trade agreement with China: 'We have the deal'
Stephen Miller goes scorched earth for Trump's BBB…
Hydrogen Gas Blend Will Reduce Power Plant's Emissions by 75% - as it Helps Power 6 States
The Rise & Fall of Dome Houses: Buckminster Fuller's Geodesic Domes & Dymaxion
New AI data centers will use the same electricity as 2 million homes
Is All of This Self-Monitoring Making Us Paranoid?
Cavorite X7 makes history with first fan-in-wing transition flight
Laser-powered fusion experiment more than doubles its power output
Watch: Jetson's One Aircraft Just Competed in the First eVTOL Race
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
A separate advance with in data encoding could triple storage to 2.1 Petabytes in a single optical disk.
Researchers at USST, RMIT and NUS have overcome the optical diffraction limit by using earth-rich lanthanide-doped upconversion nanoparticles and graphene oxide flakes. This unique material platform enables low-power optical writing nanoscale information bits.
The higher density system will use inexpensive continuous-wave lasers. This will have lower operating costs compared to traditional optical writing techniques using expensive and bulky pulsed lasers.
Next generation of high-capacity optical data storage technology will also enable the development of energy-efficient nanofabrication of flexible graphene based electronics.