>
Researchers discover revolutionary material that could shatter the limits of traditional solar panel
Scientists Tested 8 Famous Cities. Only 1 Met The Standard For Tree Cover
How Long You Can Balance on 1 Leg Reveals Neuromuscular Aging
Leukemia: Symptoms, Causes, Treatments, and Natural Approaches
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Normally, concrete is an insulator against electricity, but recent research has focused on making it conductive. Adding some form of carbon to the mix usually does the trick, with past versions being tested in airport runways that automatically melt snow.
For the new study, researchers at MIT's Concrete Sustainability Hub (CSHub) and the French National Center for Scientific Research (CNRS) added nanocarbon black, which is a cheap carbon material that boasts excellent conductivity, to concrete. At just a four-percent volume, the concrete was able to carry an electrical current – and as a result, it gave off heat too.
"Joule heating (or resistive heating) is caused by interactions between the moving electrons and atoms in the conductor," says Nicolas Chanut, co-author of the study. "The accelerated electrons in the electric field exchange kinetic energy each time they collide with an atom, inducing vibration of the atoms in the lattice, which manifests as heat and a rise of temperature in the material."