>
Freedom Does Not Mean Appointing New Taskmasters
Freedom Does Not Mean Appointing New Taskmasters
For Elon Musk's DOGE to Succeed, He Needs Ron Paul
For Elon Musk's DOGE to Succeed, He Needs Ron Paul
Spinning fusion fuel for efficiency and Burn Tritium Ten Times More Efficiently
Rocket plane makes first civil supersonic flight since Concorde
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Testing has shown rechargeable graphene aluminium ion batteries had a battery life of up to three times that of current leading lithium-ion batteries, and higher power density meant they charged up to 70 times faster.
Queensland University has teamed up with the Graphene Manufacturing Group, a Brisbane company listed on the TSX Venture Exchange in Canada, to manufacture aluminium ion battery prototypes for use in consumer goods like watches, phones, cars and laptops as well as for grid storage.
Aluminium-ion batteries have a relatively short shelf life. The combination of heat, rate of charge, and cycling can dramatically decrease energy capacity. One of the primary reasons for this short shelf life is the fracture of the traditional graphite anode, the Al ions being far larger than the Li ions used in conventional battery systems. When metal ion batteries are fully discharged, they can no longer be recharged. Ionic electrolytes, while improving safety and the long term stability of the devices by minimizing corrosion, are expensive to manufacture and purchase and may therefore be unsuited to the mass production of Al ion devices. In addition, current breakthroughs are only in limited laboratory settings, where a lot more work needs to be done on scaling up the production for use in commercial settings.
Dozens of major research institutions are working on Aluminum ion batteries.