>
The 3 Reasons Behind US Plot to Depose Venezuela's Maduro – Video #254
Evangelicals and the Veneration of Israel
Zohran Mamdani's Socialist Recipe for Economic Destruction
BREAKING: Fed-Up Citizens Sue New York AG Letitia James for Voter Intimidation...
Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel
Scientists Say They've Figured Out How to Transcribe Your Thoughts From an MRI Scan
SanDisk stuffed 1 TB of storage into the smallest Type-C thumb drive ever
Calling Dr. Grok. Can AI Do Better than Your Primary Physician?
HUGE 32kWh LiFePO4 DIY Battery w/ 628Ah Cells! 90 Minute Build
What Has Bitcoin Become 17 Years After Satoshi Nakamoto Published The Whitepaper?
Japan just injected artificial blood into a human. No blood type needed. No refrigeration.
The 6 Best LLM Tools To Run Models Locally
Testing My First Sodium-Ion Solar Battery
A man once paralyzed from the waist down now stands on his own, not with machines or wires,...

Testing has shown rechargeable graphene aluminium ion batteries had a battery life of up to three times that of current leading lithium-ion batteries, and higher power density meant they charged up to 70 times faster.
Queensland University has teamed up with the Graphene Manufacturing Group, a Brisbane company listed on the TSX Venture Exchange in Canada, to manufacture aluminium ion battery prototypes for use in consumer goods like watches, phones, cars and laptops as well as for grid storage.
Aluminium-ion batteries have a relatively short shelf life. The combination of heat, rate of charge, and cycling can dramatically decrease energy capacity. One of the primary reasons for this short shelf life is the fracture of the traditional graphite anode, the Al ions being far larger than the Li ions used in conventional battery systems. When metal ion batteries are fully discharged, they can no longer be recharged. Ionic electrolytes, while improving safety and the long term stability of the devices by minimizing corrosion, are expensive to manufacture and purchase and may therefore be unsuited to the mass production of Al ion devices. In addition, current breakthroughs are only in limited laboratory settings, where a lot more work needs to be done on scaling up the production for use in commercial settings.
Dozens of major research institutions are working on Aluminum ion batteries.