>
Active Shooter in Tactical Gear Storms Border Patrol Station in Texas--Cops Neutralize Attacker
Benjamin Franklin and the Self-Made Man: Making America
SHOCK REPORT: DOJ, FBI Review Finds NO Jeffrey Epstein 'Client List,' Confirms Suicide - SF6
FBI Concludes Jeffrey Epstein Had No Clients, Didn't Blackmail Anyone, And Definitely Killed Him
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
AI Getting Better at Medical Diagnosis
Tesla Starting Integration of XAI Grok With Cars in Week or So
Bifacial Solar Panels: Everything You NEED to Know Before You Buy
INVASION of the TOXIC FOOD DYES:
Let's Test a Mr Robot Attack on the New Thunderbird for Mobile
Facial Recognition - Another Expanding Wolf in Sheep's Clothing Technology
The device is still deeply experimental but a new proof of concept study demonstrates it working effectively in rodent models.
In the world of brain implants the chasm between science fiction and reality is still quite vast. Apart from some exciting human tests showing paralyzed individuals with implants regaining a sense of touch or controlling computers with their mind, most research in the field is still nascent.
Animal tests have demonstrated incremental technological advances, such as pigs broadcasting neural activity or monkeys playing Pong. Now, an interface that can detect pain signals in one part of the brain and immediately respond with stimulation to another part of the brain targeted to relieve that pain has been developed.
The system is called a closed-loop brain-machine interface. These devices have previously been explored for detecting and treating epileptic seizures but this is the first time the system has been used to treat pain.
The experimental device proposed in the study interfaces with two brain regions. An electrode array detects and decodes pain signals in the anterior cingulate cortex, while an optogenetic system stimulates pyramidal neurons in the prelimbic region of the prefrontal cortex to provide pain relief. This creates a real-time neurofeedback loop suppressing pain as soon as it arises.
Jing Wang, senior author on the new study, says the automated nature of the system reduces the risk of overuse and tolerance because subjects have no control over activation of the pain relief. Plus, as the system focuses on inhibiting pain processing in the brain it shouldn't be tied up with the opioid reward regions known to cause addiction problems.