>
WATCH LIVE: President Trump Holds A Press Briefing Before Leaving The NATO Summit
TRUMP HAS ISRAEL FATIGUE! STUNNING REBUKE OF "OUR GREATEST ALLY"
America's Most Lawless Agency: ICE Is the Prototype for Tyranny
The CIA Project That Proved Psychic Powers Are Real
Aptera's Solar EV Is Finally Ready For Production. Watch The Livestream Here
In-Wheel EV Hub Motors Could Be A Game-Changer. Why Aren't They Here Yet?
Mars Terraforming Within 40 Years for Plants and No Spacesuits
See-Through the Future of Display
$849 Wattcycle Server Rack Battery?! Quick Review...
After Trump Threatened Apple, His Sons Announce a Made-in-America Phone
"We're Not Ready for AI Simulation" | Official Preview
$839 Ecoworthy Version 3: Best Value 48V Battery for 2025?
Feature-packed portable learning lab for makers puts AI within reach
The latest example comes from material scientists at MIT, who have used advanced nanoscale engineering to craft a new armor material they say outperforms Kevlar and steel.
The starting point for the promising new material was a photosensitive resin, which was treated with lasers to form a lattice pattern made up of repeating microscopic struts. This material was then put in a high-temperature vacuum chamber, which converted the polymer into an ultralight carbon with an architecture originally inspired by special foams designed to absorb impacts.
"Historically this geometry appears in energy-mitigating foams," says lead author, Carlos Portela. "While carbon is normally brittle, the arrangement and small sizes of the struts in the nanoarchitected material gives rise to a rubbery, bending-dominated architecture."