>
How Do Dumb People or Corrupt People Get Elected to Top Positions?
Brand New Solar Battery With THIS Amazing Feature! EG4 314Ah Wall Mount Review
This New Forecast Just Got WAY Worse...
S3E4: The Freedom Movement Funded Its Own Prison
The day of the tactical laser weapon arrives
'ELITE': The Palantir App ICE Uses to Find Neighborhoods to Raid
Solar Just Took a Huge Leap Forward!- CallSun 215 Anti Shade Panel
XAI Grok 4.20 and OpenAI GPT 5.2 Are Solving Significant Previously Unsolved Math Proofs
Watch: World's fastest drone hits 408 mph to reclaim speed record
Ukrainian robot soldier holds off Russian forces by itself in six-week battle
NASA announces strongest evidence yet for ancient life on Mars
Caltech has successfully demonstrated wireless energy transfer...
The TZLA Plasma Files: The Secret Health Sovereignty Tech That Uncle Trump And The CIA Tried To Bury

Investigating the relationship between diet, gut bacteria and systemic inflammation, a team of Stanford University researchers has found just a few weeks of following a diet rich in fermented foods can lead to improvements in microbiome diversity and reductions in inflammatory biomarkers.
The new research pitted a high-fiber diet against a diet with lots of fermented food. Thirty-six healthy adults were recruited and randomly assigned one of the two diets for 10 weeks.
"We wanted to conduct a proof-of-concept study that could test whether microbiota-targeted food could be an avenue for combatting the overwhelming rise in chronic inflammatory diseases," explains Christopher Gardner, co-senior author on the new study.
Blood and stool samples were collected before, during, and after the dietary intervention. Over the course of the trial the researchers saw levels of 19 inflammatory proteins drop in the fermented food cohort. This was alongside increases in microbial diversity in the gut and reduced activity in four types of immune cells.
Perhaps most significantly, these changes were not detected in the group tasked with eating a high-fiber diet. Erica Sonnenburg, another co-senior author on the study, says this discordancy between the two cohorts was unexpected.
"We expected high fiber to have a more universally beneficial effect and increase microbiota diversity," she says. "The data suggest that increased fiber intake alone over a short time period is insufficient to increase microbiota diversity."