>
Why Geological Maps Are the Best Investment You've Never Heard Of
High School Student Discovers 1.5 Million Potential New Astronomical Objects...
UK Supreme Court says legal definition of 'woman' excludes trans women, in landmark ruling
Major Problem in Physics Could Be Fixed if The Whole Universe Was Spinning
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
BREAKTHROUGH Testing Soon for Starship's Point-to-Point Flights: The Future of Transportation
Molten salt test loop to advance next-gen nuclear reactors
Quantum Teleportation Achieved Over Internet For The First Time
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
The full-size kite is estimated to save up to 20 percent of fuel burn and emissions.
The US$30-million, 154-meter (505-ft) Ville de Bordeaux, owned and operated by Louis Dreyfus, is currently on a long-term lease to Airbus, which uses it to move large aircraft structures between its distributed manufacturing plants around Europe and its final assembly plant in Toulouse.
Now, it's been fitted with a 500-square-meter (5,400-sq-ft) parafoil kite, plus all the deck and bridge equipment required to run the Seawing system. The Seawing deploys automatically, first emerging from storage on a trolley, then raising up from the deck on a mast to catch the wind, and finally being released on a long cable to grab the steady, strong winds over about 200 m (656 ft) above sea level.
At this point, it begins a figure-eight trajectory at a speed over 100 km/h (62 mph), monitored and controlled by an automated system running on the ship that's programmed to place the kite for maximum traction power. The Seawing computers also interface with the ship's navigation systems, monitoring forward wind conditions and re-routing the ship to take the most efficient path possible without affecting its arrival time.
The kite about to undergo testing is half the size of the full 1,000-sq-m (10,800-sq-ft) kite that'll eventually be deployed for commercial operation. Airseas estimates the full-size system will cut both diesel consumption and shipping emissions by a remarkable 20 percent. Germany's Skysails Group has tested similar devices up to 400 sq m (4,300 sq ft) in size, finding they replace up to 2 MW of power from the main engines under favorable wind conditions.
Airseas says the Seawing system can be retro-fitted to virtually all ship types, requiring only about two days for the conversion and not getting in the way of cargo operations in port. We'd certainly be interested to learn more about the economics of this kind of system; fuel costs for large freighters are enormous, and a 20 percent saving would add up to a significant figure very quickly.