>
If you're a criminal you'll be deported
When Bill Gates isn't investing in dangerous ineffective vaccines, blocking out the sun,...
US dollar exodus to unleash $3.2 trillion 'avalanche' of selling, currency analyst says
Bitcoin ETF Inflows Top Gold ETF Inflows Year-To-Date
Cab-less truck glider leaps autonomously between road and rail
Can Tesla DOJO Chips Pass Nvidia GPUs?
Iron-fortified lumber could be a greener alternative to steel beams
One man, 856 venom hits, and the path to a universal snakebite cure
Dr. McCullough reveals cancer-fighting drug Big Pharma hopes you never hear about…
EXCLUSIVE: Raytheon Whistleblower Who Exposed The Neutrino Earthquake Weapon In Antarctica...
Doctors Say Injecting Gold Into Eyeballs Could Restore Lost Vision
Dark Matter: An 86-lb, 800-hp EV motor by Koenigsegg
Spacetop puts a massive multi-window workspace in front of your eyes
The first molecular electronics chip has been developed. This is realizing a 50-year-old goal molecular nanotechnology to integrate single molecules into circuits to achieve the ultimate scaling limits of Moore's Law.
It was developed by Roswell Biotechnologies. The chip uses single molecules as universal sensor elements in a circuit to create a programmable biosensor with real-time, single-molecule sensitivity and unlimited scalability in sensor pixel density. This innovation, appearing this week in a peer-reviewed article in the Proceedings of the National Academy of Sciences (PNAS), will power advances in diverse fields that are fundamentally based on observing molecular interactions, including drug discovery, diagnostics, DNA sequencing, and proteomics.