>
The ultimate baking soda (sodium bicarbonate) survival guide:
Most efficient generator to recharge batteries (that I've tested)
How to properly set up your 275-gallon water totes for firefighting or irrigation of garden.
Doug Casey on Milei, Markets, and the Future of Argentina
Cramming More Components Onto Integrated Circuits
'Cyborg 1.0': World's First Robocop Debuts With Facial Recognition And 360° Camera Visio
The Immense Complexity of a Brain is Mapped in 3D for the First Time:
SpaceX, Palantir and Anduril Partnership Competing for the US Golden Dome Missile Defense Contracts
US government announces it has achieved ability to 'manipulate space and time' with new tech
Scientists reach pivotal breakthrough in quest for limitless energy:
Kawasaki CORLEO Walks Like a Robot, Rides Like a Bike!
World's Smallest Pacemaker is Made for Newborns, Activated by Light, and Requires No Surgery
Barrel-rotor flying car prototype begins flight testing
Coin-sized nuclear 3V battery with 50-year lifespan enters mass production
DNA is naturally made up of combinations of four nucleobases: adenine, guanine, cytosine and thymine. Represented by the letters A, G, C and T, these bases group together in different sequences to form blueprints for every living organism. And this information storage system is incredibly dense, with a single gram of DNA capable of storing up to 215 petabytes (215 million GB) of data.That of course makes it a very attractive potential storage solution for the huge amounts of data modern society produces daily – the entire contents of the internet could fit in a shoebox full of DNA. And as if that storage wasn't dense enough, the researchers on the new study have found a way to double it.