>
Attend Ian Freeman's Appellate Court Hearing; Wednesday, February 5th, 9:30am (Boston, MA)
Dear RFK, Jr. and Del Bigtree: Why Not Start at the Foundation?
Biden Moves to Permanently Ban Offshore Oil and Gas Drilling...
Is Taurine The Elixir Of Life? Considerations For Supplementation
DMSO Transforms The Treatment of Infectious Diseases
Quantum teleportation has begun to change the world
Forget About Raspberry Pi! Use Your Old Phone Instead. (Really???)
7 Electric Aircraft That Will Shape the Future of Flying
Virginia's fusion power plant: A step toward infinite energy
Help us take the next step: Invest in Our Vision for a Sustainable, Right-to-Repair Future
Watch: Jetson founder tests the air for future eVTOL racing
"I am Exposing the Whole Damn Thing!" (MIND BLOWING!!!!) | Randall Carlson
Researchers reveal how humans could regenerate lost body parts
The stuff could make for helmets, armor and vehicle parts that are lighter, stronger and, importantly, reusable.
The key to the new material is what are known as liquid crystal elastomers (LCEs). These are networks of elastic polymers in a liquid crystalline phase that give them a useful combination of elasticity and stability. LCEs are normally used to make actuators and artificial muscles for robotics, but for the new study the researchers investigated the material's ability to absorb energy.
The team created materials that consisted of tilted beams of LCE, sandwiched between stiff supporting structures. This basic unit was repeated over the material in multiple layers, so that they would buckle at different rates on impact, dissipating the energy effectively.
In a series of experiments, the team tested how well the material could withstand impacts of different masses at different speeds. The materials were struck by objects weighing between 4 and 15 lb (1.8 and 6.8 kg) at speeds of up to 22 mph (35.4 km/h) and, sure enough, they held up.
Perhaps unsurprisingly, the material performed better with more layers of the cells. A structure with four layers, for example, had almost double the energy absorption density of a single-layer structure.
While the materials were so far only tested with impacts up to 22 mph, the team says that they should be able to absorb impacts at higher speeds as well.
The researchers say that the material could be used to improve the safety of helmets, body armor, car bumpers and other parts of vehicles and aircraft, effectively dissipating energy from impacts while remaining lightweight.