>
Trump defends AG Pam Bondi amid Epstein file backlash: 'Let her do her job'
Metal fuses in space - with no heat or pressure
In case you missed it...AIRLINE GIANT EMIRATES TO ACCEPT BITCOIN AND CRYPTO FOR FLIGHTS
Pentagon to become largest shareholder in rare earth miner MP Materials; shares surge 50%
Magic mushrooms may hold the secret to longevity: Psilocybin extends lifespan by 57%...
Unitree G1 vs Boston Dynamics Atlas vs Optimus Gen 2 Robot– Who Wins?
LFP Battery Fire Safety: What You NEED to Know
Final Summer Solar Panel Test: Bifacial Optimization. Save Money w/ These Results!
MEDICAL MIRACLE IN JAPAN: Paralyzed Man Stands Again After Revolutionary Stem Cell Treatment!
Insulator Becomes Conducting Semiconductor And Could Make Superelastic Silicone Solar Panels
Slate Truck's Under $20,000 Price Tag Just Became A Political Casualty
Wisdom Teeth Contain Unique Stem Cell That Can Form Cartilage, Neurons, and Heart Tissue
Hay fever breakthrough: 'Molecular shield' blocks allergy trigger at the site
To build the next generation of predictive weather models, we need to measure a storm from space across time over its entire lifecycle, from water vapor to heavy precipitation. To capture the phases of a storm, measurements need to be made at multiple frequencies, with a 25km resolution. The single satellite approaches currently taken can only capture one point in time, not the storm's lifecycle. To capture the lifecycle across time a satellite constellation of 5 satellites is required, but constellations of 10 to 100 would create greater breakthroughs. The only affordable option for constellations of this size SmallSats. While we have demonstrated we can shrink the satellite bus and associated instruments, the antenna's diameter cannot be shrunk, as this would not provide the resolution (or ground footprint) required.
To enable us to build better weather models this mission needs a broad multi-frequency (10 GHz to 600 GHz), offset-fed, deployable antenna which expands to multiple times the satellite bus size to create a small enough footprint to inform weather models. There are currently NO flight solutions for a SmallSat deployable antennas operating above 70 GHz, demanding a high risk, high reward approach be pursued. To fill this gap, researchers propose Starburst, an innovative new architecture for deployable structures, which not only allows this next Earth Science Mission generation mission, but may fundamentally change how we approach deployable structures in the future across many missions. Unlike traditional deployables which are constrained throughout deployment, Starburst uses an under-constrained approach to achieve high stowing efficiencies.