>
6.8 SPC vs. 300 Blackout: Powering Up the AR Platform
Autism Study By McCullough Foundation Begins New Era of Free Scientific Inquiry
REVOLUTION DAY 8: Libertarians JOIN The Revolution
US Government and Westinghouse $80bn Nuclear Reactor Deal
Graphene Dream Becomes a Reality as Miracle Material Enters Production for Better Chips, Batteries
Virtual Fencing May Allow Thousands More Cattle to Be Ranched on Land Rather Than in Barns
Prominent Personalities Sign Letter Seeking Ban On 'Development Of Superintelligence'
Why 'Mirror Life' Is Causing Some Genetic Scientists To Freak Out
Retina e-paper promises screens 'visually indistinguishable from reality'
Scientists baffled as interstellar visitor appears to reverse thrust before vanishing behind the sun
Future of Satellite of Direct to Cellphone
Amazon goes nuclear with new modular reactor plant
China Is Making 800-Mile EV Batteries. Here's Why America Can't Have Them

To build the next generation of predictive weather models, we need to measure a storm from space across time over its entire lifecycle, from water vapor to heavy precipitation. To capture the phases of a storm, measurements need to be made at multiple frequencies, with a 25km resolution. The single satellite approaches currently taken can only capture one point in time, not the storm's lifecycle. To capture the lifecycle across time a satellite constellation of 5 satellites is required, but constellations of 10 to 100 would create greater breakthroughs. The only affordable option for constellations of this size SmallSats. While we have demonstrated we can shrink the satellite bus and associated instruments, the antenna's diameter cannot be shrunk, as this would not provide the resolution (or ground footprint) required.
To enable us to build better weather models this mission needs a broad multi-frequency (10 GHz to 600 GHz), offset-fed, deployable antenna which expands to multiple times the satellite bus size to create a small enough footprint to inform weather models. There are currently NO flight solutions for a SmallSat deployable antennas operating above 70 GHz, demanding a high risk, high reward approach be pursued. To fill this gap, researchers propose Starburst, an innovative new architecture for deployable structures, which not only allows this next Earth Science Mission generation mission, but may fundamentally change how we approach deployable structures in the future across many missions. Unlike traditional deployables which are constrained throughout deployment, Starburst uses an under-constrained approach to achieve high stowing efficiencies.