>
The Fight For Bitcoin Jesus! Roger Ver Faces 109 Years In Prison #FreeRoger (upcoming broadcast)
Trump nominates Pam Bondi for US attorney general
"What if I told you Senator Matt Gaetz was the plan all along...
Doug Casey & Gen. Michael Flynn - "This isn't going to be a peaceful transfer of power.
Muscle-powered mechanism desalinates up to 8 liters of seawater per hour
Student-built rocket breaks space altitude record as it hits hypersonic speeds
Researchers discover revolutionary material that could shatter limits of traditional solar panels
In case you missed it, Ben Affleck just dropped the best talk on AI and where we're heading:
LG flexes its display muscle with stretchable micro-LED screen
LiFePO4 Charging Guidelines: What is 100%? What is 0%?! How to Balance??
Skynet On Wheels: Chinese Tech Firm Reveals Terrifying Robo-Dog
Energy company claims its new fusion technology can provide heat and power to 70,000 homes:
Wi-Fi Can be Used to Influence Brainwaves, Has Potential for Hypnotic Effects and Social Engineering
Startups Like Neuralink And Science Corp. Are Aiming To Help The Blind See Again
This lab curiousity only needs to be millions of times to power tiny low voltage computer chips.
If millions of these tiny circuits could be built on a 1-millimeter by 1-millimeter chip, they could serve as a low-power battery replacement. The system seems to be energy harvesting from Brownian motion. The amount of graphene and processing needed to achieve this energy harvesting is system is something that can make sense for certain niches powering circuits but this is not something that would be practical for any large-scale energy generation. The "limitless" power refers to tiny, tiny constant trickles of power.
"An energy-harvesting circuit based on graphene could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors," said Paul Thibado, professor of physics and lead researcher in the discovery.
Fluctuation-induced current from freestanding graphene P. M. Thibado, P. Kumar, Surendra Singh, M. Ruiz-Garcia, A. Lasanta, and L. L. Bonilla Phys. Rev. E 102, 042101 – Published 2 October 2020