>
The current state of education. She has a point.
This is one of the most compelling testimonies as to what's happening in Antarctica ever heard
Mike Rowe was recently interviewed by Moms for America. This is a real eye opener.
What it takes to make a #2 pencil.
Watch the Jetson Personal Air Vehicle take flight, then order your own
Microneedles extract harmful cells, deliver drugs into chronic wounds
SpaceX Gigabay Will Help Increase Starship Production to Goal of 365 Ships Per Year
Nearly 100% of bacterial infections can now be identified in under 3 hours
World's first long-life sodium-ion power bank launched
3D-Printed Gun Components - Part 1, by M.B.
2 MW Nuclear Fusion Propulsion in Orbit Demo of Components in 2027
FCC Allows SpaceX Starlink Direct to Cellphone Power for 4G/5G Speeds
The method is reported in Carbon and involves making briquettes — dense packages of carbon nanotube powders. Nanocomposites made with briquettes perform equally well as those made from the more expensive masterbatches, which are also polymer-specific — that is, less versatile.
"We believe the use of dense briquettes of carbon nanotubes can significantly facilitate the development of the carbon nanotube composite industry. This technique is cheap and applicable to a broad variety of polymer matrices, without sacrificing any of the electrical and thermal properties of the final material," the lead author of the study, Skoltech PhD student Hassaan Butt, stated.
In the last decades, carbon nanotubes have been intensively investigated by researchers from academia and the industry because of their unique combination of electrical, thermal, and mechanical properties. Meanwhile, polymer-based nanocomposites have come to be the largest carbon nanotube application and the one closest to widespread integration into everyday life. It is easy to understand why: The smallest amounts of nanotubes added to a polymer endow the material with fundamentally new properties, such as electrical conductivity and piezoresistivity, as well as crucially enhancing its thermal and mechanical properties.
The recent study in Carbon began as an attempt to address the challenge of achieving sufficient carbon nanotube dispersion within a host polymer to attain optimal composite properties. To this end, Skoltech researchers and their collaborators from Kurnakov Institute investigated the method for rapid expansion of supercritical solution (RESS) of nanotubes, which leads to their deagglomeration. However, it did not yield any improvements in the ultimate properties of polymer nanocomposites. The team decided to explore the implications of this from the opposite perspective.